Allomorph Selection in the Japanese Verb Paradigm

Kenneth Hanson khanson679@gmail.com https://khanson679.github.io

Stony Brook University

12/04/2021

Background

What is the relationship between phonology, morphology, and the lexicon?

Background

- What is the relationship between phonology, morphology, and the lexicon?
- The Japanese verb paradigm displays several types of allomorphy that appear to be restricted to certain verbal suffixes.

Background

- What is the relationship between phonology, morphology, and the lexicon?
- The Japanese verb paradigm displays several types of allomorphy that appear to be restricted to certain verbal suffixes.
- Why does such allomorphy occur only in these contexts?

 Allomorph selection (Ito and Mester 2004, 2015): such allomorphs are specified in the lexicon and selected by the phonology via (classic) Optimality Theory.

- Allomorph selection (Ito and Mester 2004, 2015): such allomorphs are specified in the lexicon and selected by the phonology via (classic) Optimality Theory.
- While I&M's approach does well for a subset of the verbal paradigm, it suffers from several problems when extended to the complete paradigm:

- Allomorph selection (Ito and Mester 2004, 2015): such allomorphs are specified in the lexicon and selected by the phonology via (classic) Optimality Theory.
- While I&M's approach does well for a subset of the verbal paradigm, it suffers from several problems when extended to the complete paradigm:
 - Failure to handle cases of opacity

- Allomorph selection (Ito and Mester 2004, 2015): such allomorphs are specified in the lexicon and selected by the phonology via (classic) Optimality Theory.
- While I&M's approach does well for a subset of the verbal paradigm, it suffers from several problems when extended to the complete paradigm:
 - Failure to handle cases of opacity
 - Redundant lexical specification of allomorphs of verbal stem

- Allomorph selection (Ito and Mester 2004, 2015): such allomorphs are specified in the lexicon and selected by the phonology via (classic) Optimality Theory.
- While I&M's approach does well for a subset of the verbal paradigm, it suffers from several problems when extended to the complete paradigm:
 - Failure to handle cases of opacity
 - Redundant lexical specification of allomorphs of verbal stem
 - Overgeneration caused by lexically specified stem allomorphs

- Allomorph selection (Ito and Mester 2004, 2015): such allomorphs are specified in the lexicon and selected by the phonology via (classic) Optimality Theory.
- While I&M's approach does well for a subset of the verbal paradigm, it suffers from several problems when extended to the complete paradigm:
 - Failure to handle cases of opacity
 - Redundant lexical specification of allomorphs of verbal stem
 - Overgeneration caused by lexically specified stem allomorphs
- We should seriously consider the existence of phonological processes whose application is restricted by morphological/lexical context.

The main verbal paradigm

- The main verbal paradigm
- > The standard analysis and the allomorph selection analysis

- The main verbal paradigm
- > The standard analysis and the allomorph selection analysis
- The t-suffix sub-paradigm

- The main verbal paradigm
- > The standard analysis and the allomorph selection analysis
- The t-suffix sub-paradigm
- Extending the allomorph selection analysis to the t-suffixes

- The main verbal paradigm
- > The standard analysis and the allomorph selection analysis
- The t-suffix sub-paradigm
- Extending the allomorph selection analysis to the t-suffixes
- Problems with the allomorph selection analysis

- The main verbal paradigm
- > The standard analysis and the allomorph selection analysis
- The t-suffix sub-paradigm
- Extending the allomorph selection analysis to the t-suffixes
- Problems with the allomorph selection analysis
- Conclusion

The Main Paradigm

Alternation	Ex. Suffix		Ex. C-Stem <i>nom-</i> 'drink'	Ex. V-Stem <i>tabe-</i> 'eat'
$C \leftrightarrow \varnothing$	non-past	-(a)na	nom- u	tabe- <mark>ru</mark>
$V \leftrightarrow \varnothing$	negative		nom- <mark>ana</mark> -i	tabe- <mark>na</mark> -i
Irregular	potential		nom- e -ru	tabe- <mark>rare</mark> -ru

Table 1: Suffix alternations in the main paradigm

The Main Paradigm

Alternation	Ex. Suffix		Ex. C-Stem <i>nom-</i> 'drink'	Ex. V-Stem <i>tabe-</i> 'eat'
$C \leftrightarrow \varnothing$	non-past	-(a)na	nom- u	tabe- <mark>ru</mark>
$V \leftrightarrow \varnothing$	negative		nom- <mark>ana</mark> -i	tabe- <mark>na</mark> -i
Irregular	potential		nom- e -ru	tabe- <mark>rare-</mark> ru

Table 1: Suffix alternations in the main paradigm

- Standard Analysis (Kuroda 1965; McCawley 1968)
 - 1. $C \rightarrow \emptyset$ / C]_{vb-stem}/nom+ru/ \rightarrow [nom-u]2. $V \rightarrow \emptyset$ / V]_{vb-stem}/tabe+ana+i/ \rightarrow [tabe-na-i]

Following Ito and Mester (2004, 2015), we aim to derive verbal allomorphy using constraints on syllable structure.

Can we do better with OT?

- Following Ito and Mester (2004, 2015), we aim to derive verbal allomorphy using constraints on syllable structure.
- We must assume that ONSET and NOCODA are ranked low in modern Japanese, since vowel hiatus and consonant clusters are common.

Can we do better with OT?

- Following Ito and Mester (2004, 2015), we aim to derive verbal allomorphy using constraints on syllable structure.
- We must assume that ONSET and NOCODA are ranked low in modern Japanese, since vowel hiatus and consonant clusters are common.
- In order to exceptionally allow deletion in the suffix, we need high-ranking constraints which are specific to verbal stems and suffixes.

OT Version of the Standard Analysis

Context-specific constraints are needed, parallel to the rule-based analysis.

/nom+ru/	Coda Cond	Dep-IO	Ident-IO	Max-IO	NoCoda
a. nom-ru	*!		*		
🞯 b. nom-u		 		*	
🞯 c. no-ru				*	
d. nomi-ru		*!			
e. nom-mu			*!		*

Figure 1: C-stem verb with non-past suffix, no context-specific constraints

- CODACOND disallows codas with independent place features.
- ► MAX-IO/DEP-IO/IDENT-IO disallow deleting/inserting/changing a segment.
- NOCODA disallows syllables with a coda.

OT Version of the Standard Analysis

Context-specific constraints are needed, parallel to the rule-based analysis.

/nom+ru/	Coda Cond	Dep-IO	Ident-IO	Max-IO (VB-STEM)	Max-IO	NoCoda
a. nom-ru	*!		*	1		
🞯 b. nom-u			 	1	*	
c. no-ru				*!		
d. nomi-ru		*!		1		
e. nom-mu			*!	1		*

Figure 2: C-stem verb with non-past suffix, with context-specific constraints

- CODACOND disallows codas with independent place features.
- ► MAX-IO/DEP-IO/IDENT-IO disallow deleting/inserting/changing a segment.
- NOCODA disallows syllables with a coda.

 Using either rules or constraints, the standard analysis requires reference to morphological context.

- Using either rules or constraints, the standard analysis requires reference to morphological context.
- ► I&M's alternative: the allomorph selection analysis.

- Using either rules or constraints, the standard analysis requires reference to morphological context.
- I&M's alternative: the allomorph selection analysis.
- Key Point #1: the relevant morphemes have more than one UR.

- Using either rules or constraints, the standard analysis requires reference to morphological context.
- I&M's alternative: the allomorph selection analysis.
- Key Point #1: the relevant morphemes have more than one UR.
 - potential: {-rare, -e}

- Using either rules or constraints, the standard analysis requires reference to morphological context.
- I&M's alternative: the allomorph selection analysis.
- Key Point #1: the relevant morphemes have more than one UR.
 - potential: {-rare, -e}
 - non-past: {-ru, -u}

- Using either rules or constraints, the standard analysis requires reference to morphological context.
- I&M's alternative: the allomorph selection analysis.
- Key Point #1: the relevant morphemes have more than one UR.
 - potential: {-rare, -e}
 - non-past: {-ru, -u}
 - negative: {-ana, -na}

- Using either rules or constraints, the standard analysis requires reference to morphological context.
- I&M's alternative: the allomorph selection analysis.
- Key Point #1: the relevant morphemes have more than one UR.
 - potential: {-rare, -e}
 - non-past: {-ru, -u}
 - negative: {-ana, -na}

Key Point #2: We consider every mapping from UR to SR for every possible combination of URs, and let OT select the best mapping as usual.

The Allomorph Selection Analysis – Main Paradigm Example

/nom+{u,ru}/	Coda Cond	DEP-IO	Ident-IO	Max-IO	NoCoda
$^{ extsf{W}}$ a. nom-u $ ightarrow$ nom-u			1		
b. nom-ru \rightarrow nom-ru	*!		 		*
c. nom-ru \rightarrow nom-u				*!	
d. nom-ru \rightarrow no-ru				*!	
e. nom-ru $ ightarrow$ nomi-ru		*!	 		
f. nom-ru \rightarrow nom-mu			*!		*

Figure 3: C-stem verb with non-past suffix, allomorph selection analysis

- CODACOND disallows codas with independent place features.
- ► MAX-IO/DEP-IO/IDENT-IO disallow deleting/inserting/changing a segment.
- NOCODA disallows syllables with a coda.

It derives the allomorphy from general phonological principles, eliminating the need for context-specific constraints or diacritics.

- It derives the allomorphy from general phonological principles, eliminating the need for context-specific constraints or diacritics.
- It requires only mechanisms that are independently necessary: a theory of phonology and a lexicon capable of storing muliple URs.

- It derives the allomorphy from general phonological principles, eliminating the need for context-specific constraints or diacritics.
- It requires only mechanisms that are independently necessary: a theory of phonology and a lexicon capable of storing muliple URs.
- It is not without cost, since we need to enrich the lexicon.

- It derives the allomorphy from general phonological principles, eliminating the need for context-specific constraints or diacritics.
- It requires only mechanisms that are independently necessary: a theory of phonology and a lexicon capable of storing muliple URs.
- ▶ It is not without cost, since we need to enrich the lexicon.
- It also handles fully irregular forms, such as the potential suffix -rare/-e, which must be lexically specified in any case.

The T-Suffix Sub-Paradigm

The t-suffixes (-te, -ta, -tari, -tara, and -tatte) behave differently from the main paradigm but identically to each other.

The T-Suffix Sub-Paradigm

- The t-suffixes (-te, -ta, -tari, -tara, and -tatte) behave differently from the main paradigm but identically to each other.
- Both the stem and suffix may alternate.

The T-Suffix Sub-Paradigm

- The t-suffixes (-te, -ta, -tari, -tara, and -tatte) behave differently from the main paradigm but identically to each other.
- Both the stem and suffix may alternate.
- The alternation depends on the exact stem consonant.

The T-Suffix Sub-Paradigm

- The t-suffixes (-te, -ta, -tari, -tara, and -tatte) behave differently from the main paradigm but identically to each other.
- Both the stem and suffix may alternate.
- The alternation depends on the exact stem consonant.

Process	Ex. Verb		Past Forr	n
Gemination Assimilation Epenthesis C-to-V	sin-u	'die' 'lend'	sin+ <mark>t</mark> a kas+ta	\rightarrow kaet-ta \rightarrow sin-da \rightarrow kasi-ta \rightarrow nai-ta

Table 2: Allomorphy in the past suffix, partial listing

The T-Suffix Sub-Paradigm – All Stem Types

Туре	Ex. Verb)	Past Forn	n
V	tabe-ru	'eat'	tabe+ta	ightarrow tabe-ta $ ightarrow$ tat-ta
t	tat-u	'drink'	tat+ta	
w	kaw-u	'buy'	kaw+ta	ightarrow kat-ta $ ightarrow$ kaet-ta
r	kaer-u	'go home'	kaer+ta	
n	sin-u	ʻdie'	sin+ <mark>t</mark> a	→ sin- d a
m	nom-u	ʻdrink'	no <mark>m</mark> +ta	→ non-da
b	yob-u	ʻcall'	yo <mark>b</mark> +ta	→ yon-da
s	kas-u	ʻlend'	kas+ta	→ kasi-ta
k	nak-u	ʻcry'	na <mark>k</mark> +ta	→ nai-ta
g	oyog-u	ʻswim'	oyo <mark>g</mark> +ta	→ oyoi-da

Table 3: Allomorphy in the past suffix, full listing

The consonant cluster may become a geminate (t, w, r)

The consonant cluster may become a geminate (t, w, r)

The stem consonant may assimilate in place (m, b)

- The consonant cluster may become a geminate (t, w, r)
- The stem consonant may assimilate in place (m, b)
- The stem consonant may be nasalized (b)

- The consonant cluster may become a geminate (t, w, r)
- The stem consonant may assimilate in place (m, b)
- The stem consonant may be nasalized (b)
- > An epenthetic vowel may be inserted at the end of the stem (s)

- The consonant cluster may become a geminate (t, w, r)
- The stem consonant may assimilate in place (m, b)
- The stem consonant may be nasalized (b)
- An epenthetic vowel may be inserted at the end of the stem (s)
- The stem consonant may be replaced with a vowel (k, g)

- The consonant cluster may become a geminate (t, w, r)
- The stem consonant may assimilate in place (m, b)
- The stem consonant may be nasalized (b)
- An epenthetic vowel may be inserted at the end of the stem (s)
- The stem consonant may be replaced with a vowel (k, g)
- The suffix consonant may be voiced to match the stem (n, m, b, g)

For the t/w/r/n/m-stems (and possibly b-stems), we can derive all alternations using only well-motivated markedness constraints, so classic OT is sufficient for these cases.

- For the t/w/r/n/m-stems (and possibly b-stems), we can derive all alternations using only well-motivated markedness constraints, so classic OT is sufficient for these cases.
- The alternations in s-, k-, and g-stems are not amenable to such an analysis, pushing us towards lexical specification of stem allomorphs.

- For the t/w/r/n/m-stems (and possibly b-stems), we can derive all alternations using only well-motivated markedness constraints, so classic OT is sufficient for these cases.
- The alternations in s-, k-, and g-stems are not amenable to such an analysis, pushing us towards lexical specification of stem allomorphs.
- ► It is not clear whether this is plausible, since we would be claiming lexical specification of a huge number of allomorphs whose relations are completely predictable → lexical redundancy problem.

- For the t/w/r/n/m-stems (and possibly b-stems), we can derive all alternations using only well-motivated markedness constraints, so classic OT is sufficient for these cases.
- The alternations in s-, k-, and g-stems are not amenable to such an analysis, pushing us towards lexical specification of stem allomorphs.
- ► It is not clear whether this is plausible, since we would be claiming lexical specification of a huge number of allomorphs whose relations are completely predictable → lexical redundancy problem.
- ► We can derive the past tense of s- and k-stem verbs in this manner, but not g-stems, which require opaque voicing in the suffix → opacity problem.

- For the t/w/r/n/m-stems (and possibly b-stems), we can derive all alternations using only well-motivated markedness constraints, so classic OT is sufficient for these cases.
- The alternations in s-, k-, and g-stems are not amenable to such an analysis, pushing us towards lexical specification of stem allomorphs.
- ► It is not clear whether this is plausible, since we would be claiming lexical specification of a huge number of allomorphs whose relations are completely predictable → lexical redundancy problem.
- ► We can derive the past tense of s- and k-stem verbs in this manner, but not g-stems, which require opaque voicing in the suffix → opacity problem.
- ► The new stem URs will be predicted to be available in the main paradigm → overgeneration problem.

Classic OT Alone is Sufficient for Some Stems

/kaw+ta/	*DD	*NT	Coda Cond	Max-IO	Ident-IO	NoCoda
a. kaw-ta		I	*!			· *
📽 b. kat-ta		 	1	1	*	*
c. kaw-wa	*!	I			*	*
d. ka-ta		1		*!		
e. ka-wa		1		*!		

Figure 4: W-stem verb with past suffix, single UR

- *DD disallows voiced obstruent clusters (including geminates)
- *NT disallows a nasal followed by a voiceless obstruent

Classic OT Alone is Sufficient for Some Stems

/nom+ta/	*DD	*NT	Coda Cond	Max-IO	Ident-IO (Manner)	Ident-IO	NoCoda
a. nom-ta			*!				*
📽 b. non-da			1			*	*
c. non-ta		*!				*	*
d. no-ta		1	I	*!	l		
e. nom-a			1	*!	l		
f. nom-ma			 	 	*!	*	*
g. not-ta			1		*!	*	*

Figure 5: M-stem verb with past suffix, single UR

- *DD disallows voiced obstruent clusters (including geminates)
- *NT disallows a nasal followed by a voiceless obstruent

Allomorph Selection Succeeds for S/K-Stems

/{kas,kasi}+ta/	CodaCond	Dep-IO	Ident-IO	NoCoda
$^{ extbf{RP}}$ a. kasi-ta $ ightarrow$ kasi-ta				
b. kas-ta $ ightarrow$ kas-ta	*!			*
c. kas-ta $ ightarrow$ kasi-ta		*!		
d. kas-ta $ ightarrow$ kat-ta			*!	*

Figure 6: S-stem verb with past suffix, allomorph selection

Allomorph Selection Succeeds for S/K-Stems

/{nak,nai}+ta/	CODACOND	Dep-IO	Ident-IO	NoCoda
$^{ extbf{RP}}$ a. nai-ta $ ightarrow$ nai-ta				
b. nak-ta $ ightarrow$ nak-ta	*!			*
c. nak-ta \rightarrow nai-ta		*!		
d. nak-ta $ ightarrow$ nat-ta			*!	*

Figure 7: K-stem verb with past suffix, allomorph selection

Allomorph Selection Fails for G-Stems

/{oyog,oyoi}+ta/	CodaCond	Ident-IO	NoCoda
$^{ extsf{W}}$ a. oyoi-ta $ ightarrow$ oyoi-ta		1	
\odot b. oyoi-ta $ ightarrow$ oyoi-da		*!	
c. oyog-ta $ ightarrow$ oyog-ta	*!	I	*
d. oyog-ta $ ightarrow$ oyoi-da		**!	
e. oyog-ta $ ightarrow$ oyot-ta		*!	*

Figure 8: G-stem verb with past suffix, allomorph selection

Allomorph Selection Fails for G-Stems

/{oyog,oyoi}+ta/	CodaCond	Ident-IO	NoCoda
$^{ extbf{ker}}$ a. oyoi-ta $ ightarrow$ oyoi-ta		1	
\odot b. oyoi-ta $ ightarrow$ oyoi-da		*!	
c. oyog-ta $ ightarrow$ oyog-ta	*!	I	*
d. oyog-ta $ ightarrow$ oyoi-da		**!	
e. oyog-ta $ ightarrow$ oyot-ta		*!	*

Figure 8: G-stem verb with past suffix, allomorph selection

- We need to select the vowel-final allomorph of a g-stem verb when combining with a t-suffix, but we also need the information in the consonant-final allomorph in order to derive voicing in the suffix.
 - ▶ Ruled-based derivation: /oyog+ta/ \rightarrow oyog-da \rightarrow [oyoi-da]

Allomorph Selection Overgenerates in the Main Paradigm

/{kas,kasi}+{u,ru}/	CodaCond	Faith	Onset	NoCoda
$^{ extbf{kgr}}$ a. kas-u $ ightarrow$ kas-u		1		
b. kas-ru $ ightarrow$ kas-ru	*!	 		*
c. kasi-u $ ightarrow$ kasi-u		1	*!	
$^{ extsf{ker}}$ d. kasi-ru $ ightarrow$ kasi-ru		1		

Figure 9: S-stem verb with non-past suffix, allomorph selection

FAITH is a shorthand for all (context-free) faithfulness constraints.

1. Opacity

1. Opacity

• As with any classic OT-based approach, opacity is a major obstacle.

- 1. Opacity
 - As with any classic OT-based approach, opacity is a major obstacle.
- 2. Overgeneration

- 1. Opacity
 - As with any classic OT-based approach, opacity is a major obstacle.
- 2. Overgeneration
 - The allomorph analysis predicts that any vowel-final stem will be a perfect fit for any consonant-initial suffix, e.g., *kasi-ru should be just as good as kasu-u.

- 1. Opacity
 - As with any classic OT-based approach, opacity is a major obstacle.
- 2. Overgeneration
 - The allomorph analysis predicts that any vowel-final stem will be a perfect fit for any consonant-initial suffix, e.g., *kasi-ru should be just as good as kasu-u.
- 3. Lexical Redundancy

- 1. Opacity
 - As with any classic OT-based approach, opacity is a major obstacle.
- 2. Overgeneration
 - The allomorph analysis predicts that any vowel-final stem will be a perfect fit for any consonant-initial suffix, e.g., *kasi-ru should be just as good as kasu-u.
- 3. Lexical Redundancy
 - For the main paradigm (e.g. non-past -u/ru) we were able to simplify the grammar and increase explanatory power in exchange for a small number of lexically specified allomorphs.

- 1. Opacity
 - As with any classic OT-based approach, opacity is a major obstacle.
- 2. Overgeneration
 - The allomorph analysis predicts that any vowel-final stem will be a perfect fit for any consonant-initial suffix, e.g., *kasi-ru should be just as good as kasu-u.
- 3. Lexical Redundancy
 - For the main paradigm (e.g. non-past -u/ru) we were able to simplify the grammar and increase explanatory power in exchange for a small number of lexically specified allomorphs.
 - For the t-suffix paradigm, we needed lexical specification of a huge number of allomorphs whose relations are completely predictable, and created new problems in the process.

Another instance of opacity: w-deletion.

• Example: /kaw+ru/ \rightarrow kaw-u \rightarrow [ka-u]

- Example: /kaw+ru/ \rightarrow kaw-u \rightarrow [ka-u]
- Hall, Jurgec, and Kawahara (2018) use this fact to argue for allomorph selection in combination with Harmonic Serialism.

- Example: /kaw+ru/ \rightarrow kaw-u \rightarrow [ka-u]
- Hall, Jurgec, and Kawahara (2018) use this fact to argue for allomorph selection in combination with Harmonic Serialism.
- The other problems discussed can probably be fixed by adding additional assumptions.

- Example: /kaw+ru/ \rightarrow kaw-u \rightarrow [ka-u]
- Hall, Jurgec, and Kawahara (2018) use this fact to argue for allomorph selection in combination with Harmonic Serialism.
- The other problems discussed can probably be fixed by adding additional assumptions.
 - Opacity in g-stems \rightarrow extra constraints

- Example: /kaw+ru/ \rightarrow kaw-u \rightarrow [ka-u]
- Hall, Jurgec, and Kawahara (2018) use this fact to argue for allomorph selection in combination with Harmonic Serialism.
- The other problems discussed can probably be fixed by adding additional assumptions.
 - Opacity in g-stems \rightarrow extra constraints
 - \blacktriangleright Overgeneration in the main paradigm \rightarrow preferred allomorphs

- Example: /kaw+ru/ \rightarrow kaw-u \rightarrow [ka-u]
- Hall, Jurgec, and Kawahara (2018) use this fact to argue for allomorph selection in combination with Harmonic Serialism.
- The other problems discussed can probably be fixed by adding additional assumptions.
 - Opacity in g-stems \rightarrow extra constraints
 - \blacktriangleright Overgeneration in the main paradigm \rightarrow preferred allomorphs
- The complexity that we tried to eliminate from the grammar ended up being shifted elsewhere.

- Example: /kaw+ru/ \rightarrow kaw-u \rightarrow [ka-u]
- Hall, Jurgec, and Kawahara (2018) use this fact to argue for allomorph selection in combination with Harmonic Serialism.
- The other problems discussed can probably be fixed by adding additional assumptions.
 - Opacity in g-stems \rightarrow extra constraints
 - \blacktriangleright Overgeneration in the main paradigm \rightarrow preferred allomorphs
- The complexity that we tried to eliminate from the grammar ended up being shifted elsewhere.
- The alternations seen in the t-suffixes do not appear to be optimizing.

Despite its advantages, I&M's allomorph selection analysis fairs poorly when extended to the t-suffix sub-paradigm.

- Despite its advantages, I&M's allomorph selection analysis fairs poorly when extended to the t-suffix sub-paradigm.
- The alternations seen with the t-suffixes really are specific to this set of morphemes → morphology has a role to play.

- Despite its advantages, I&M's allomorph selection analysis fairs poorly when extended to the t-suffix sub-paradigm.
- ► The alternations seen with the t-suffixes really are specific to this set of morphemes → morphology has a role to play.
- Questions for future research:

- Despite its advantages, I&M's allomorph selection analysis fairs poorly when extended to the t-suffix sub-paradigm.
- The alternations seen with the t-suffixes really are specific to this set of morphemes → morphology has a role to play.
- Questions for future research:
 - Should we keep allomorph selection for just the main verbal paradigm?

- Despite its advantages, I&M's allomorph selection analysis fairs poorly when extended to the t-suffix sub-paradigm.
- ► The alternations seen with the t-suffixes really are specific to this set of morphemes → morphology has a role to play.
- Questions for future research:
 - Should we keep allomorph selection for just the main verbal paradigm?
 - What would a complete formal description of the Japanese verb paradigm look like?

- Despite its advantages, I&M's allomorph selection analysis fairs poorly when extended to the t-suffix sub-paradigm.
- ► The alternations seen with the t-suffixes really are specific to this set of morphemes → morphology has a role to play.
- Questions for future research:
 - Should we keep allomorph selection for just the main verbal paradigm?
 - What would a complete formal description of the Japanese verb paradigm look like?
 - Can we learn anything from looking at other dialects?

Works Cited

- Hall, Erin, Peter Jurgec, and Shigeto Kawahara (2018). "Opaque allomorph selection in Japanese and Harmonic Serialism: a reply to Kurisu 2012". In: *Linguistic inquiry* 49.3, pp. 599–610.
- Ito, Junko and Armin Mester (2004). "Morphological contrast and merger: Ranuki in Japanese". In: *Journal of Japanese Linguistics* 20.1, pp. 1–18.
- (2015). "Word formation and phonological processes". In: Handbook of Japanese phonetics and phonology. De Gruyter Mouton, pp. 363–396.
- Kuroda, S-Y (1965). "Generative grammatical studies in the Japanese language.". PhD thesis. Massachusetts Institute of Technology.
- McCawley, James D (1968). *The phonological component of a grammar of Japanese*. 2. Mouton.

The Main Paradigm

Verb Form	Suffix	Ex. C-Stem <i>nom-</i> 'drink'	Ex. V-Stem <i>tabe- '</i> eat'	Alternation
non-past	-(r)u	nom-u	tabe-ru	$arnothing \leftrightarrow C$
passive	-(r)are	nom-are-ru	tabe-rare-ru	
causative	-(s)ase	nom-ase-ru	tabe-sase-ru	
conditional	-(r)eba	nom-eba	tabe-reba	
volitional	-(y)oo	nom-oo	tabe-yoo	
negative	-(a)na	nom-ana-i	tabe-na-i	$V \leftrightarrow \varnothing$
infinitive	-i/∅	nom-i	tabe-∅	
potential	-rare/e	nom-e-ru	tabe-rare-ru	$\begin{array}{c} V \leftrightarrow CVCV \\ V \leftrightarrow CV \end{array}$
imperative	-ro/e	nom-e	tabe-ro	

Rules for the T-Suffix Paradigm

- 1. [labial] \rightarrow [alveolar] / _]_{vb-stem} [alveolar]
- 2. [-cons, -syl] \rightarrow [+cons, -cont] / _]_{vb-stem} [-cont]
- 3. [alveolar] \rightarrow [+voice] / [+voice]]_{vb-stem} ____
- 4. [labial, -cont] \rightarrow [+nasal] / _]_{vb-stem} [-cont]
- 5. $\varnothing \rightarrow$ [i] / [s] _]_{vb-stem} [alveolar]
- 6. [velar] \rightarrow [i] / _]_{vb-stem} [alveolar]

Rule (2) must be ordered before rule (6).

stem: $w \rightarrow t$, $m \rightarrow n$ stem: $\{r, w\} \rightarrow t$ suffix: $t \rightarrow d$ stem: $b \rightarrow n$ stem: $s \rightarrow si$ stem: $\{k, g\} \rightarrow i$