
Tiers, Paths, and Syntactic Locality: The View from Learning

Kenneth Hanson
Department of Linguistics
Stony Brook University

Stony Brook, NY 11794, USA
kenneth.hanson@stonybrook.edu

Abstract

Many long-distance linguistic dependencies
across domains can be modeled as tier-based
strictly local (TSL) patterns (Graf, 2022a).
Such patterns are in principle efficiently learn-
able, but known algorithms require unreal-
istic conditions. In contrast, Heuser et al.
(2024) present an empirically-grounded algo-
rithm which learns syntactic islands by tracking
bigrams along movement paths, but does not
involve tiers. I combine the advantages of both
approaches by adapting the latter algorithm to
produce a TSL grammar. This method is capa-
ble of learning other syntactic blockers besides
islands, and augments the typological predic-
tions of the TSL model with a version of the
Height-Locality Connection (Keine, 2019).

1 Introduction

The tier-based strictly local (TSL) languages are a
restrictive class of subregular languages over strings
or trees which model a wide range of long-distance
linguistic dependencies, from consonant and vowel
harmony to movement and case licensing (cf. Heinz,
2018; Graf, 2022a). Elements which are irrelevant
to a given dependency are treated as invisible, and
those remaining are treated as adjacent, forming
a structure called a tier. From this perspective, a
syntactic or phonotactic grammar consists of many
intersecting TSL patterns with different tiers. For
syntax, these include tiers for wh-movement, EPP-
movement, 𝜙-agreement, etc., plus a tier including
all elements to regulate local dependencies.

Generally speaking, linguistic dependencies are
subject to various blocking effects, including local-
ity restrictions such as the lack of raising out of
finite clauses in English (known as hyperraising)
as well as the well-known island constraints (see
Belletti 2018 for an overview). Exactly which ele-
ments block which dependencies varies somewhat
across languages, though there are some general
tendencies (Keine, 2019). Roughly speaking, it is

assumed in the TSL model that dependent elements
must be adjacent on a tier; if any other elements
intervene on the tier then blocking effects result.
Thus, variation in blockers across languages and
phenomena equates to differences in the relevant set
of tier elements. For example, all C heads appear
on the EPP-movement tier in English, but not in a
language which allows hyperraising (Graf, 2022b).

While this parameter of the model allows good
empirical coverage, it also presents a learning diffi-
culty due to the large number of logically possible
tiers, which grows exponentially with the number
of elements (segments or syntactic heads). There
exist efficient algorithms for learning TSL string
patterns, but they either require the tier elements
to be fixed in advance (Lambert et al., 2021) or
they are not robust against interaction with other
constraints (Jardine and McMullin, 2017; Lambert,
2021). The problem is particularly acute for syntax,
for even if we can reduce the problem to learning of
TSL string languages, the number of tiers and the
size of a syntactic lexicon make exhaustive search
completely impractical.

A solution may be found by looking to
empirically-motivated models of child language
acquisition. Heuser et al. (2024) present a model
for learning island constraints which constructs a
grammar of local bigrams from attested movement
paths, supplemented by generalization by the Tol-
erance Principle (Yang, 2016). They also show
that this model makes correct generalizations based
on a realistic input distribution. This approach is
interesting in that it circumvents the difficulties of
tier detection, but only because it lacks tiers alto-
gether: the resulting grammar is strictly local (SL)
rather than TSL. This brings several limitations,
particularly that it can only recognize movement
paths which have been delimited in advance.

Ideally, we would like to combine the generality
and typological success of the TSL model with
an efficient, linguistically-motivated learning algo-

rithm such as that in Heuser et al. (2024). Towards
this end, I adapt their algorithm to produce TSL
grammars as used in subregular syntax. I also
draw attention to several linguistically interesting
aspects of the model, which derives a version of the
Height-Locality Connection—the observation that
higher categories in the clausal spine are subject to
fewer locality restrictions—similar to that given in
Keine (2019). It is also equally applicable to other
pairwise dependencies such as agreement.

The remainder of this paper is laid out as follows.
§2 presents a model of syntactic dependencies
based on ancestor strings (Shafiei and Graf, 2020),
whose grammars will be our learning target. §3
adapts the algorithm from Heuser et al. (2024) to
the subregular framework, and §4 modifies it to
produce a TSL grammar. §5 shows how this model
derives a version of the Height-Locality Connection.
§6 concludes.

2 Subregular syntax with ancestor strings

This section introduces the class of TSL string
languages along with a model of syntactic depen-
dencies based on ancestor strings (a-strings, Shafiei
and Graf 2020). We begin with the more restric-
tive class of strictly local or SL languages, which
model local linguistic dependencies, before moving
on to the TSL languages. Examples of string-like
constraints from syntax are provided. From there,
we discuss the syntactic framework which provides
the relevant strings, and the limits of this model.

2.1 Strictly local languages

Many classes of subregular languages, including
SL and TSL, are defined in terms of 𝑘-factors,
which for these classes are substrings, i.e. discrete
𝑘-grams. The definitions here follow Mayer (2021).

Let Σ be a fixed alphabet, let 𝑠 be a string over Σ∗,
and let ⋊,⋉ ∉ Σ be the left and right edge markers.
The set 𝑓𝑘 (𝑠), the 𝑘-factors of 𝑠, consists of all
the length-𝑘 substrings of ⋊𝑘−1𝑠⋉𝑘−1 where 𝑘 ≥ 1.
For example, 𝑓2(𝑎𝑏𝑎𝑏𝑎𝑐) = {⋊𝑎, 𝑎𝑏, 𝑏𝑎, 𝑎𝑐, 𝑐⋉}.

An SL grammar is just a set of forbidden 𝑘-
factors of fixed width, and its language consists
of all strings which do not contain any of these
𝑘-factors. Formally:

Definition 1 A strictly 𝑘-local (SL-𝑘) grammar is
a set 𝐺 ⊆ (Σ ∪ {⋊,⋉})𝑘 . A language 𝐿 ⊆ Σ∗ is
SL-𝑘 iff there exists an SL-𝑘 grammar 𝐺 such that
𝐿 = {𝑠 ∈ Σ∗ : 𝑓𝑘 (𝑠) ∩ 𝐺 = ∅}.

Alternatively, an SL-𝑘 grammar can be defined
in terms of permitted 𝑘-factors. A set of forbidden
factors is a negative grammar; its complement,
the set of permitted factors, is a positive grammar.
There are circumstances where either form may
be more convenient. When necessary, these will
be disambiguated using a superscript: 𝐺+ for a
positive grammar and 𝐺− for a negative grammar.

Example 1 Consider the hierarchy of functional
categories in a typical English clause. In the sen-
tence The pizza has been eaten, it consists of the
sequence of categories T ·Perf ·Prog · v. Let us
assume that the general form of the hierarchy is

T > (Perf) > (Prog) > (Pass) > v

where categories in parentheses are optional.
The set of licit sequences in a functional hierarchy

can be encoded using an SL-2 grammar. Though
modeled as a string, in the syntactic framework to
be developed in §2.3, it represents a path through
part of the tree. The positive grammar is as follows
(ignoring edge markers for simplicity):

𝐺+ =

T Perf,
T Prog, Perf Prog,
T Pass, Perf Pass, Prog Pass,
T v, Perf v, Prog v, Pass v

The corresponding negative grammar is:

𝐺− =

T T, Perf T, Prog T, Pass T, v T,

Perf Perf, Prog Perf, Pass Perf, v Perf,
Prog Prog, Pass Prog, v Prog,

Pass Pass, v Pass,
v v

Every 2-factor in our example string appears only

in the positive grammar.1 ⌟

2.2 Tier-based strictly local languages
A TSL language is similar to an SL language except
that certain symbols are ignored. Let𝑇 ⊆ Σ be a tier
alphabet. The string 𝜋𝑇 (𝑠) is the tier projection
of 𝑠, the result of deleting all 𝜎 in 𝑠 such that
𝜎 ∉ 𝑇 , and concatenating those that remain. For
example, if Σ = {𝑥, 𝑎, 𝑏, 𝑐} and 𝑇 = {𝑎, 𝑏, 𝑐} then
𝜋𝑇 (𝑎𝑥𝑥𝑏𝑥𝑥𝑐) = 𝜋𝑇 (𝑥𝑥𝑥𝑎𝑏𝑐𝑥𝑥𝑥) = 𝑎𝑏𝑐.

Definition 2 A tier-based strictly 𝑘-local (TSL-𝑘)
grammar is a tuple (𝑇, 𝐺), where𝑇 is a tier alphabet
and 𝐺 is an SL-𝑘 grammar over 𝑇 . A language
𝐿 ⊆ Σ∗ is TSL-𝑘 iff there exists a TSL-𝑘 grammar
such that 𝐿 = {𝑠 ∈ Σ∗ : 𝑓𝑘 (𝜋𝑇 (𝑠)) ∩ 𝐺 = ∅}.

1It is not necessary for every functional head to always
be present. If syntax includes SL computations then it can
implement functional hierarchies just as easily as category
selection. See Hanson (2023) for details.

By definition, all symbols not in 𝑇 may be freely
inserted and deleted without affecting the well-
formedness of a given string w.r.t. a given TSL
grammar, a fact that will be important to the discus-
sion of tier identification in §4.2.

Example 2 DP subjects in English are thought to
move to Spec-TP, whether from inside vP or an
embedded non-finite TP (the raising construction);
they cannot move from a finite CP (hyperraising).
Examples are given in (1) below. This dependency—
call it EPP-movement—can be encoded with a TSL-
2 grammar which requires the mover and landing
site (marked with an “EPP” subscript) to be adjacent
on a tier. In anticipation of the syntactic framework
to be developed, we model this dependency with a
string which encodes each head along the movement
path, projecting a tier that contains only the relevant
elements (movers, landing sites, and blockers).2

(1) a. We [vP have a problem].
Path: ⋊ ·Depp · v · Tepp ·⋉
Tier: ⋊ ·Depp · Tepp ·⋉

b. We seem [TP to have a problem].
Path: ⋊ ·Depp · v · T ·V · v · Tepp ·⋉
Tier: ⋊ ·Depp · Tepp ·⋉

c. *We seem [CP that have a problem].
Path: ⋊ ·Depp · v · T ·C ·V · v · Tepp ·⋉
Tier: ⋊ ·Depp ·C · Tepp ·⋉

Depp and Tepp are adjacent on the tier in the licit
examples (tier ⋊ ·Depp · Tepp ·⋉) but not in the hy-
perraising example (tier ⋊ ·Depp ·C · Tepp ·⋉). As
will be discussed shortly, we aim only to ensure that
the mover is immediately followed by the landing
site. Accordingly, we only need to ban substrings
which consist of a mover followed by anything else.
Thus, we have the following grammar:
(2) Grammar for EPP-movement

𝑇 = { Depp, Tepp, C }
𝐺− = { Depp ·Depp, Depp ·C, Depp ·⋉ }

The reader may confirm that the tier for the hyper-
raising example contains the illicit 2-factor Depp ·C,
while the tiers for the grammatical examples con-
tains no illicit 2-factors. ⌟

Essentially, a TSL grammar allows us to ignore
elements like VP, NP, etc., which are irrelevant to
the long-distance dependency in question. The next
subsection introduces a syntactic framework which
provides the strings assumed in the above examples.

2Following MG convention, intermediate landing sites are
not modeled directly.

Tpres :: epp+

v

seem

to

v

we :: epp− have

a

problem

Tpres :: epp+

v

seem

that

Tpres

v

we :: epp− have

a

problem

Figure 1: Dependency trees for We seem to have a
problem (left) and *We seem that have a problem (right)
showing a-strings for moving elements. In the latter
structure, that intervenes, preventing movement.

2.3 Dependency trees and ancestor strings

Following recent work in subregular syntax (Shafiei
and Graf, 2020; Graf, 2022b, a.o.), I use MG depen-
dency trees for the syntactic representation. Exam-
ples for sentences (1b) and (1c) are given in Figure 1.
In these trees each node is a lexical item; compared
to X-bar trees, each head and its projections are col-
lapsed into a single node. The daughters of a node
are its arguments, ordered from right to left in order
of first merge, such that the rightmost daughter is
the complement and all others are specifiers. For
example, the right daughter of embedded v is the
head of the complement VP, and the left daughter
is the head of the DP subject (its specifier). In
addition, each node is annotated with MG features
guiding the Merge and Move operations (cf. Stabler,
1997, 2011). Since we are not concerned with local
dependencies here, only Move features are shown.
Positive features mark landing sites, and negative
features mark moving elements. For example, finite
T bears epp+ and the subject D head bears epp−.
Note that all elements appear in their base positions
only, as in standard MG derivation trees.

Let us now implement a string-based model of
movement constraints in which we extract the path
from each mover to the root of the tree. Essen-
tially, we take the order imposed by the (inverted)
dominance relation and ignore the sibling relation.
Shafiei and Graf (2020) call such paths ancestor
strings, or a-strings, which they used to model
a subset of the island constraints, including the
wh-island constraint and the complex NP island
constraint. First, we will see how this works for
EPP-movement, then briefly discuss wh-movement.

Example 3 In order to keep the notation concise, I
substitute most lexical items with their categories,
and place the movement features as subscripts with-
out the +/− diacritic, as before. Thus, the a-strings
for the EPP movers in the structures in Figure 1 are:

Raising (✓): Depp · v · T ·V · v · Tepp
Hyperraising (✗): Depp · v · T ·C ·V · v · Tepp

These are exactly the same strings as before, so
we can continue to use the grammar in (2). ⌟

Example 4 The wh-island constraint can be de-
scribed as a ban on A′-movement paths (including
but not limited to wh-movement) which are inter-
rupted by an interrogative CP, as illustrated by the
difference between (3a) and (3b). Movement paths
(a-strings) and their wh-tiers are included below
each example, and the full structures are shown in
Figure 2. For simplicity, we abstract away from
EPP-movement and model only wh-movement.

(3) a. What did you think that John ate ?
Path: Dwh ·V · v · T · that ·V · v · T ·Cwh
Tier: Dwh ·Cwh

b. *What did you wonder whether John ate
?

Path: Dwh ·V · v · T ·whether ·V · v · T ·Cwh
Tier: Dwh ·whether ·Cwh

We can construct a very similar grammar to the
previous one which captures this blocking effect:

(4) Grammar for wh-island constraint
𝑇 = { Dwh, Cwh, whether }
𝐺− = { Dwh ·Dwh, Dwh ·whether, Dwh ·⋉ }

As before, the tier projection for the island violation
contains the illicit 2-factor Dwh ·whether, while the
non-island structure contains no such 2-factors. ⌟

Cwh :: wh+

Tpast

v

you think

that

Tpast

v

John eat

what :: wh−

Cwh :: wh+

Tpast

v

you wonder

whether

Tpast

v

John eat

what :: wh−

Figure 2: Dependency trees for What did you think that
John ate? (left) and *What did you wonder whether John
ate? (right). In the latter structure, whether intervenes.

Note that because the a-string of a node extends to
the root of the tree, it may contain fragments of other
movement paths as well as nodes that are not part
of any movement path. Our grammar is constructed
in such a way that this does not pose an issue.
However, the approach does have several limitations,
as discussed below. Additionally, applying Heuser
et al.’s algorithm to a-strings requires this extra
material to be removed, as discussed in §3.

Also note that TSL grammars such as those in
(2) and (4) enforce only these constraints and no
others. As alluded to in the introduction, we must
intersect these and other constraints, including local
constraints, to produce a multi-TSL (MTSL) gram-
mar. This is just a set of pairs of tier alphabets and
associated constraints (grammars with the same tier
alphabet can be intersected directly); see De Santo
and Graf (2019) for details.

2.4 The strengths and limitations of a-strings

A-strings encode only enough information to en-
force constraints base on containment (dominance)
from the perspective of the mover. Shafiei and Graf
(2020) use them to model island constraints, and as
we have seen, certain other blockers can be handled
in the same manner. We can also ensure that the
mover has a landing site and capture some cases of
relativized minimality, namely those where a mover
contains another mover of the same type.

So, what can a-strings not do? Notably, they
do not allow us to ensure that every landing site
has exactly one mover. This requires tree tiers,
as in Graf (2022b). They also cannot handle all
cases of relativized minimality, as c-commanding
specifiers do not appear in an a-string; this requires
the command strings (c-strings) of Graf and Shafiei
(2019). Additionally, to model specifier islands,
information encoding left branches must be added
to the string. See Shafiei and Graf (2020) for further
discussion. The focus of this paper is on learning
the tier alphabet; for this the a-string model will
suffice, and the results should in principle extended
to more complete models.

3 Distributional learning of syntactic
blockers

I now describe the algorithm from Heuser et al.
(2024), adapted to the syntactic framework pre-
sented in the previous section. We then discuss
the ways in which the algorithm can do more than
it was originally intended to, but being essentially

an SL learner rather than a TSL learner, is not a
complete solution on its own.

3.1 Preliminaries
The algorithm assumes that the learner has already
parsed the input and identified both moved elements
and their initial positions. Now, they must deter-
mine the licit paths from the mover to the landing
site for each type of movement. This can be cast
as the learning an SL-2 grammar over (truncated)
a-strings for each movement dependency. It is also
assumed that the learner will generalize to unseen
paths via the Tolerance Principle (TP, Yang 2016).
The equates to a procedure for adding some but not
all missing 𝑘-factors to the grammar.

While some readers may worry about taking the
tree structure as a given, this essentially reduces
to the assumption that long-distance syntactic de-
pendencies are parasitic on local constituent struc-
ture, which must be learned regardless. Similarly,
some other mechanism is responsible for identify-
ing moved elements. It is conceivable that each
of these can be learned distributionally with the
TP, though such work is still in its infancy. See,
e.g., Liang et al. (2022) regarding the learning of
syntactic categories, and Li and Schuler (2023)
regarding recursive embedding.

3.2 Tracking bigrams
Consider the wh-object question in (5), assumed
to be in the input. The learner gathers from this
that what · eat · v · Tpast ·Cwh is a licit movement
path, but does not know (yet) that every sequence
of categories Dwh ·V · v · T ·Cwh is a licit path.

(5) a. What did John eat ?
b. C :: wh+

Tpast

v

John eat

what :: wh−

c. a-string: what · eat · v · Tpast ·Cwh

The learner begins memorizing the attested 2-
factors from each path, which is just the proce-
dure for learning a (positive) SL-2 string grammar
(Heinz, 2010). From the current example, they
learn that { what · eat, eat · v, v ·Tpast, Tpast ·Cwh }
are all licit 2-factors.3 Heuser et al. show that
because functional categories like v and T are few

3I continue to ignore edge markers for simplicity.

in number and frequent in the input, the learner
will discover that all combinations may occur. For
example, they will learn that wh-movement may
occur over transitive and intransitive v, past and
present tense, and so on.

Note that we must truncate of the a-string at
the landing site when it is not the root, since the
portion beyond the landing site may contain bigrams
which cannot occur along the movement path. For
example, in the sentence Who wonders what John
ate?, the full a-string for what contains the bigram
Cwh ·wonder. If not excluded, the learner would
conclude that movement over interrogative C is
permitted. We will return to this issue in §3.5.

3.3 Generalizing with the Tolerance Principle
With regard to lexical categories such as verbs, the
learner needs to invoke the TP. Given a class of 𝑁
items and a proposed generalization, the TP states
that the learner will adopt the generalization iff the
number of items 𝑀 in this class which are known to
fit the generalization exceeds a threshold 𝜃𝑁 , where

𝜃𝑁 = 𝑁/𝑙𝑛(𝑁)

In this case, 𝑁 is the total number of verbs they
have learned, and 𝑀 is the number that have been
attested with wh-movement. Heuser et al. show
that for English, wh-movement of objects occurs
with a large proportion of the most frequent verbs
in child-directed speech—the number of exceptions
far below the threshold—so the learner will adopt
the generalization that wh-movement is permitted
across all verbs. This is equivalent to adding all
missing 2-factors of the form Dwh ·V and V · v to
the grammar.4

This brings us to islands. Once the learner ob-
serves cross-clausal movement from an embedded
declarative such as (3a), they will add Tpast · that
and that · think to the grammar. But if movement
across a certain structure, such as the wh-island
violation in (3b), is not attested, and the TP does not
permit generalization, then the relevant 2-factors
will never be added to the grammar. Heuser et al.
(2024) show that this is indeed what we expect for
“strong islands” in English. They also show how
this derives the fact that not all verbs which take
CP complements allow wh-movement, forming so-
called “selective islands”. Although the learner

4The TP does not provide the class of possible generaliza-
tions, only whether a given generalization is “good enough”.
For present purposes, I assume that syntactic categories such
as V/A/N/P/T/C are the only conditioning factors.

observes wh-movement across verbs like think and
say, they do not observe movement across verbs
such as complain and quip, and there are too many
such verbs for the TP to permit generalization to
the full class of verbs which select for a CP.

3.4 Beyond islands
To briefly summarize, the algorithm constructs a
positive SL-2 grammar encapsulating the crucial
information about licit and illicit movement paths
where blockers are effectively encoded as missing
2-factors. Although not discussed by Heuser et al.
(2024), the approach is equally applicable to other
restrictions on movement such as those discussed
by Keine (2019), which are the focus of §5.

It is also applicable to non-movement dependen-
cies, to the extent that pairs of dependent items can
be identified. Shafiei and Graf (2020) note that
constraints on long-distance linguistic patterns tend
to take involve a domain and blockers within that
domain. For movement, the domain elements are
movers and their landing sites, while for agreement
we have, in Minimalist terms, elements with unval-
ued and valued features of the same type. Indeed,
Keine’s version of the Height-Locality Connec-
tion treats movement and agreement equally. If
these are learned in the same way, then we have an
explanation for this close correspondence.

Finally, note that the same properties that al-
low learning of weak islands also allow for cross-
linguistic variation such as the availability of hyper-
raising (Charles Yang, p.c.). Specifically, it predicts
that hyperraising should only be allowed if robustly
attested in the input. This, of course, raises the
question of how such structures ever arise. But we
could just as easily ask the same of long-distance
wh-movement, which is by now known to be more
or less restrictive in different languages. For now,
we must set these diachronic questions aside.

3.5 Limitations of SL learning
The fact that the Heuser et al. (2024) algorithm is
essentially an SL learner means that the resulting
grammars cannot be applied to arbitrary a-strings,
only those which start with a mover and which are
truncated at the first landing site. This is because it
is in general not possible for an SL grammar to relate
two elements which do not occur in the same 𝑘-
factor. As a consequence, it is impossible to ensure
that there is exactly one landing site per mover,
nor to detect whether a blocker actually occurred
along a movement path and not somewhere else. In

contrast, our TSL grammars from §2 do not suffer
from either restriction.

Thus, truncating the a-string only creates the
illusion that SL is adequate. While this operation
is useful in the learning algorithm, including it in
the grammar would increase its power, producing
a class that is quite different from TSL.5 Instead,
what we want to do is to take the information that
was obtained using this technique and encode it
in a TSL grammar, which has the right formal
properties. This is the topic of the next section.

4 Constructing the tier

To review the discussion so far, we can frame our
learning problem as follows: given a corpus of MG
dependency trees, how do we discover the TSL
constraints on long-distance dependencies over a-
strings? In particular, how do we discover which
elements other than the dependent items are visible?

We have already seen how Heuser et al.’s path-
based algorithm forms the foundation of an appeal-
ing solution, but on its own is not enough. This
section begins with a more detailed summary of the
issues involved with TSL learning before attempt-
ing to bridge the gap by modifying the Heuser et al.
algorithm to produce a TSL grammar.

4.1 The problem of learning tiers
TSL languages are efficiently learnable given a fixed
tier alphabet and 𝑘-factor size(Lambert et al., 2021),
but this may not be a realistic assumption for natural
language. There is reason to think that the value
of 𝑘 rarely exceeds 2 for long-distance constraints
(McMullin, 2016; Graf, 2022b; Hanson, 2024), but
it is far less clear that the tier alphabet can be
known in advance. Because the number of possible
tiers alphabets is exponential in the size of the
full alphabet (it is 2 |Σ |), we must avoid exhaustive
search of this space. While there exist efficient
(polynomial time) algorithms that determine the tier
alphabet from positive data (Jardine and McMullin,
2017; Lambert, 2021), these are not robust against
interaction with other constraints. Since natural
language almost always involves the interaction
of many constraints, this prevents such algorithms
from being used with real world data.

One way of tackling the problem is to find ways to
pare down the hypothesis space such that the brute
force method becomes practical. For example, we

5It would be a subclass of IBSP. Shafiei and Graf (2020)
also use IBSP, although in a very different manner.

could appeal to formal universals on the relations
between the alphabets of different tiers (Aksënova
and Deshmukh, 2018). Alternatively, we could
make use of substantive universals such as some
version of the Height-Locality Connection; Keine’s
(2019) version says that a “lower” category can be
a blocker for a “higher category”, e.g. v cannot be
a blocker for a landing site at T.

Another possibility, which I pursue here, is to
identify a set of heuristics which allows the learner
to discover the tier alphabet without ever engaging in
exhaustive search. In other words, the supposedly
impossible tiers are in fact perfectly valid, but
the learner will never posit them under normal
conditions due to the way in which they navigate
the hypothesis space. The crucial heuristic in this
case, taken from Heuser et al. (2024), is that by
restricting our attention to the path between two
dependent elements, we can identify its blockers,
which must appear on the same tier.

In this case, the Height-Locality Connection
becomes a side effect of the learning process rather
than a cause, and is also unified with the theory of
islands. As discussed earlier, the close similarity of
movement and agreement constraints is derived as
well. Yet another issue with existing TSL learners
is that they all involve exact identification in the
limit, whereas children must generalize from limited
data. Though orthogonal to our main focus, the
adoption of the TP largely solves this problem
as well. Altogether, the proposed approach not
only solves several major learnability problems for
the TSL model, but also adds several typological
predictions which are not inherent to the model.

4.2 From local to tier-based constraints
Existing TSL learners infer the tier alphabet by uti-
lizing a definitional property of a TSL-𝑘 language:
any symbol not on the tier can be freely inserted
and deleted without changing the well-formedness
of a string. As discussed by Lambert (2021), we
can do this by keeping track of just the sets of
attested local 𝑘-factors and (𝑘+1)-factors. Since
the 𝑘-factors can themselves be obtained from the
(𝑘+1)-factors, only the latter must be memorized.
Thus, in principle we can use the local 2-factors
discovered by Heuser et al. (2024)’s algorithm to
identify tier-based 1-factors, which are the blockers
themselves. By recombining these blockers with
the dependent items that bookend the path, we can
construct the desired TSL-2 grammar.

However, we have still not addressed the problem

of interaction with local constraints. Detecting free
insertion and deletion as described above requires
collecting every possible local (𝑘 +1)-factor in a
TSL language, but the existence of other constraints
means that this will never happen. For instance,
every permutation of every subset of a functional
hierarchy would have to occur in the input for these
elements to be removed from the tier.

I propose that we can solve this problem by using
the background grammar encoding local constraints
as the standard of comparison for free insertion and
deletion. Recall the behavior of our path-based
learner for wh-movement structures such as those
in (3a) and (5). After decomposing paths and
applying the TP, the resulting grammar will contain
a dense network of 2-factors of the form { Dwh ·V,
V · v, v ·T, T ·Cdecl, Cdecl ·V }, but not T ·whether
or whether ·V. All of these 2-factors are licit when
they do not occur along a wh-movement path, and
are therefore part of the local constraint grammar.
As a result, we can infer that whether is a blocker
due to the conspicuous absence of 2-factors which
contain it. In contrast, 2-factors like T · v (reverse
order) and V ·C (skipping T) are already missing
in the local constraint grammar, so their absence in
the movement path grammar can be ignored.

4.3 Algorithm
The proposed algorithm is as follows. Let 𝐺2

𝐿
be

the positive SL-2 grammar for local constraints
and 𝐺2

𝑀
be the grammar for movement type 𝑀.

Construct 𝐺2
𝐿

by collecting all 2-factors from all a-
strings, and construct 𝐺2

𝑀
from truncated a-strings

as before. Add missing 2-factors to each where
permitted by the TP. Next, construct 𝐺1

𝐿
and 𝐺1

𝑀

by decomposing the 2-factors in 𝐺2
𝐿

and 𝐺2
𝑀

into
their constituent 1-factors.

Now we test for tier membership. Free deletion
is vacuous for TSL-1, since it is trivially true that
for every symbol, removing that symbol from an at-
tested 2-factor which contains it in a certain position
produces an attested 1-factor (this not necessarily
true for larger values of 𝑘).

The crucial test, corresponding to the free in-
sertion test, tests for factors missing from 𝐺2

𝑀
but

present in 𝐺2
𝐿
. Let 𝐺2

𝐷
= 𝐺2

𝐿
\ 𝐺2

𝑀
. For every

symbol, we ask if it can be added to either side
of 1-factor in 𝐺1

𝑀
to produce a 2-factor in 𝐺2

𝐷
;

if so, then the symbol is a blocker. Finally, we
construct the target TSL-2 grammar, which consists
of 2-factors containing the mover followed by a
blocker, another mover, or the right edge marker.

Example 5 Given typical data, the grammar 𝐺2
𝑀

for wh-movement will include all 2-factors of
the form { Dwh ·V, V · v, v ·T, T ·Cdecl, T ·Cwh }.
It also contains that · think and that · say but not
that · complain or that · quip. 𝐺2

𝐿
contains all of

these, so the difference 𝐺2
𝐷

includes that · complain
and that · quip. If we consider the elements com-
plain and quip, we could add that from 𝐺1

𝑀
to

2-factors in 𝐺2
𝐷

, so they are blockers. In contrast,
even though that has containing 2-factors in 𝐺2

𝐷
,

these cannot be constructed by adding a symbol
from 𝐺1

𝑀
, so they are not blockers. ⌟

Based on examples like these, it would appear
that comparing just 𝐺1

𝐿
and 𝐺1

𝑀
is sufficient, since

any element in 𝐺1
𝐿

but not 𝐺1
𝑀

is guaranteed to
have a containing factor in 𝐺2

𝐷
. If this reasoning

is correct, it may be possible to simplify the above
procedure. However, it renders the relation to
Lambert (2021) opaque, and there may be corner
cases which have not been considered. Also, the
fact that movement paths are calculated from the
base position could affect the predictions of the
model when we look beyond EPP-movement and
wh-movement. I leave the investigation of such
details to future work.

4.4 Discussion

The reader may be wondering why we do not simply
track local 3-factors in order to directly infer tier-
based 2-factors. There are several problems with
this method, but first and foremost is that it greatly
increases data sparsity. Although Heuser et al.
(2024) found empirical success with local 2-factors,
it is not clear whether the TP will allow the same
generalizations when applied to 3-factors.

Next, I should describe how the model could
be extended beyond domain-based constraints on
movement. Handing agreement should be straight-
forward; we just need to add positive and negative
agreement features analogous to MG movement
features, as in Hanson (2024). Other dependencies
such as case assignment would require identification
of the relevant domain nodes (i.e. as in dependent
case theory), and we could in principle adapt the al-
gorithm to c-strings in order to identify constraints
on c-commanding elements.

Finally, I wish to briefly mention some alternative
approaches to learning long-distance syntactic de-
pendencies. Many of these are probabilistic models;
for example, the model in Pearl and Sprouse (2013)
tracks path trigram probabilities in order to learn

syntactic islands. This is not entirely dissimilar to
the present model, except that we do not attempt
to learn gradient constraints. It is, of course, possi-
ble to introduce gradience into subregular models;
see Mayer (2021) and Torres et al. (2023). The
present paper, by incorporating a TP-based model,
relegates the use of frequency/probability to a small
corner of the learning algorithm. In principle, we
could adapt it to produce a probabilistic TSL gram-
mar by comparing 𝑘-factor probabilities rather than
discrete 𝑘-factors.

5 On the Height-Locality Connection

The Height-Locality Connection (HLC) is the obser-
vation that restrictions on long-distance syntactic
dependencies correlate with the category of the
“height” of the upper element (e.g. landing site)
such that higher categories can enter into more
distant dependencies (Keine, 2019). While sev-
eral distinct theories can be found in the literature
(Williams, 2002; Abels, 2012, a.o.), the present
approach is most directly comparable to Keine’s
theory of Probe Horizons, in which each type of
probe (i.e. a head that hosts a landing site or un-
valued feature) has a horizon beyond which no
dependencies can be formed. In TSL terms, a hori-
zon is simply a blocker on a tier, and in this sense
no different from an island, a bounding node in the
binding theory, or any other such element. I show
here that the learning algorithm from the previous
section predicts a version of the HLC which is
similar though not identical to Keine’s.

For Keine, the horizon for each combination
of major category and active feature is lexically
specified. For example, finite T in English bears
some feature (which we have been calling epp+)
which triggers movement of the subject. This probe
can see into a non-finite TP, but not a finite CP.
Thus, C is a horizon for this dependency in English,
but it need not be so in other languages. Keine
shows T is a horizon for analogous A-movement in
Hindi; in languages with hyperraising neither T nor
C is a horizon. As we have discussed, this variation
is a core prediction of the TSL model as well.

However, according to Keine, it is not the case
that any category is a possible horizon for any
probe, only those that are at least as high as the
category of the probe. This means that a probe on
T can never have v or V as a horizon, for example.6

6I refer the reader to Section 5 of Keine (2019) regard-
ing the derivation of this generalization, which is based on

Restricting our attention to the basic clausal spine,
this yields the typology of possible horizons shown
in (6). Thus, we might rephrase the HLC as saying
that higher categories must have a larger locality
domain; lower categories may see just as far, but
have smaller domains as a tendency.
(6)

Category Possible Horizons

C C
T C, T
v C, T, v

Let us consider how such a generalization could
arise from the learning algorithm outlined here.
In the case of EPP-movement, the learner ob-
serves movement from Spec-vP in simple transitive
clauses, and out of VP in the case of unaccusatives
and passives. When all is said and done, V and v
do not appear on the tier, and so are not horizons.
If the learner also observes raising out of TP (as in
English), T will be removed as well, as will C in a
language with hyperraising, but for V and v this is
all but guaranteed, since DPs in general originate
within these phrases. By the same logic, the learner
will remove C from the tier for wh-movement only
if cross-clausal movement is observed (as it is in
English), but the observation of wh-object move-
ment even in simplex clauses necessarily rules out
V, v, and T since all are below C.

To be fully explicit, the proposed algorithm pre-
dicts the HLC to be a tendency rather than a strict
rule in both directions: lower categories usually
have smaller locality domains, and higher cate-
gories usually have larger ones, but exceptions are
in principle possible in both directions. Again,
in our representative examples of EPP-movement
and wh-movement the relevant class of movers is
able to occur in the complement of VP, the lowest
possible position in the clausal spine; invisibility
of the entire functional sequence below the probe
follows as a result. Thus, to determine whether
Keine’s generalization is truly correct, we would
need to find a class of mover which originates only
in higher positions, that is, one which does not
include any DPs. At present, I do not know of a
good candidate class of movers to perform this test.

To close this section, I wish to reemphasize
the generality of the proposed learning algorithm,
which is equally relevant to islands and other kinds
of blockers. In his discussion of acquisition, Keine

the assumption that functional projections involve “feature
inheritance” of lower categories in the functional sequence.

notes that the implicational hierarchy imposed by
his theory provides the learner with a safe way of
navigating the space of possible horizons, starting
with the assumption that the category of the probe
is also the lowest horizons, and removing horizons
from the grammar as required by the input. This
is correct, and our algorithm works from a similar
principle. But Keine’s assumption that projections
lower than the probe cannot be horizons is not
necessary to achieve this.

6 Conclusion

In this paper, I proposed an algorithm which allows
for the creation of TSL grammars from the output
of Heuser et al.’s path-based algorithm, avoiding
the need to search the space of tier alphabets. This
approach combines the strengths of their algorithm
with those of the TSL model, and derives the Height-
Locality Connection as a byproduct of the learning
process. While this paper used a-strings and focused
on movement, the principle of inferring tier-based
constraints via comparison of SL grammars should
in principle extend to other TSL models of syntax
and other dependencies such as agreement and case.
I leave investigation of these to future research.

More broadly, this work represents the start of
integration between subregular syntax and acquisi-
tion theories based on the TP. I am aware only of
one other line of work which involves learning TSL
grammars with the TP, which is Belth’s (2023) al-
gorithm for learning long-distance harmony. Since
subregular linguistics has consistently shown a great
deal of formal similarity across domains, it would
be prudent to examine whether Belth’s algorithm
can be applied to the problem of learning syntactic
dependencies, and vice versa. Formal learnability
has long been central to subregular linguistics, but
as I hope to have shown, future progress may rely on
looking also to theories grounded in the empirical
facts of child language acquisition.

Acknowledgments

This work partly was supported by the National
Science Foundation under Grant No. BCS-1845344
and by an award from the Institute for Advanced
Computational Science at Stony Brook University. I
thank Jordan Kodner and Sarah Payne for reviewing
an early draft of the paper. I also thank three
anonymous reviewers for their detailed comments,
which helped to improve the clarity of several key
issues.

References
Klaus Abels. 2012. The Italian left periphery: A view

from locality. Linguistic Inquiry, 43(1):229–254.

Alëna Aksënova and Sanket Deshmukh. 2018. Formal
restrictions on multiple tiers. In Proceedings of the
Society for Computation in Linguistics 2018, pages
64–73.

Adriana Belletti. 2018. Locality in syntax. In Oxford
Research Encyclopedia of Linguistics. Oxford Uni-
versity Press.

Caleb Belth. 2023. Towards a learning-based account
of underlying forms: A case study in Turkish. In Pro-
ceedings of the Society for Computation in Linguistics
2023, pages 332–342.

Aniello De Santo and Thomas Graf. 2019. Structure
sensitive tier projection: Applications and formal
properties. In Formal Grammar, pages 35–50, Berlin,
Heidelberg. Springer.

Thomas Graf. 2022a. Subregular linguistics: bridging
theoretical linguistics and formal grammar. Theoreti-
cal Linguistics, 48(3–4):145–184.

Thomas Graf. 2022b. Typological implications of tier-
based strictly local movement. In Proceedings of the
Society for Computation in Linguistics 2022, pages
184–193.

Thomas Graf and Nazila Shafiei. 2019. C-command de-
pendencies as TSL string constraints. In Proceedings
of the Society for Computation in Linguistics 2019,
pages 205–215.

Kenneth Hanson. 2023. Strict locality in syntax. In
Proceedings of CLS 59.

Kenneth Hanson. 2024. Tier-based strict locality and the
typology of agreement. Ms. Stony Brook University.

Jeffrey Heinz. 2010. String extension learning. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 897–906,
Uppsala, Sweden. Association for Computational
Linguistics.

Jeffrey Heinz. 2018. The computational nature of phono-
logical generalizations. In Larry M. Hyman and Frans
Plank, editors, Phonological Typology, number 23 in
Phonetics and Phonology, pages 126–195. De Gruyter
Mouton.

Annika Heuser, Hector Vazquez Martinez, and Charles
Yang. 2024. The learnability of syntactic islands.
Presentation at NELS 54.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Language and Automata Theory and Applications,
pages 64–76, Cham. Springer International Publish-
ing.

Stefan Keine. 2019. Selective opacity. Linguistic In-
quiry, 50(1):13–62.

Dakotah Lambert. 2021. Grammar interpretations and
learning TSL online. In Proceedings of the Fifteenth
International Conference on Grammatical Inference,
volume 153 of Proceedings of Machine Learning
Research, pages 81–91. PMLR.

Dakotah Lambert, Jonathan Rawski, and Jeffrey Heinz.
2021. Typology emerges from simplicity in represen-
tations and learning. Journal of Language Modelling,
9(1):151–194.

Daoxin Li and Kathryn D. Schuler. 2023. Acquiring
recursive structures through distributional learning.
In BUCLD 47: Proceedings of the 47th Annual Boston
University Conference on Language Development.

Kevin Liang, Diana Marsala, and Charles Yang. 2022.
Distributional learning of syntactic categories. In
BUCLD 46: Proceedings of the 46th annual Boston
University Conference on Language Development.

Connor Mayer. 2021. Capturing gradience in long-
distance phonology using probabilistic tier-based
strictly local grammars. In Proceedings of the Society
for Computation in Linguistics 2021, pages 39–50.

Kevin McMullin. 2016. Tier-based locality in long-
distance phonotactics: learnability and typology.
Ph.D. thesis, University of British Columbia.

Lisa Pearl and Jon Sprouse. 2013. Syntactic islands and
learning biases: Combining experimental syntax and
computational modeling to investigate the language
acquisition problem. Language Acquisition, 20(1):23–
68.

Nazila Shafiei and Thomas Graf. 2020. The subregular
complexity of syntactic islands. In Proceedings of the
Society for Computation in Linguistics 2020, pages
421–430.

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retore, editor, Logical Aspects of Compu-
tational Linguistics. Springer.

Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617–643.
Oxford University Press.

Charles Torres, Kenneth Hanson, Thomas Graf, and
Connor Mayer. 2023. Modeling island effects with
probabilistic tier-based strictly local grammars over
trees. In Proceedings of the Society for Computation
in Linguistics 2023, pages 155–164.

Edwin Williams. 2002. Representation theory. MIT
Press.

Charles Yang. 2016. The price of linguistic productivity:
How children learn to break the rules of language.
MIT Press.

https://doi.org/10.7275/R5K64G8S
https://doi.org/10.7275/R5K64G8S
https://doi.org/10.7275/BC8Q-VJ22
https://doi.org/10.7275/BC8Q-VJ22
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1515/tl-2022-2037
https://doi.org/10.1515/tl-2022-2037
https://aclanthology.org/2022.scil-1.15
https://aclanthology.org/2022.scil-1.15
https://aclanthology.org/W19-0121
https://aclanthology.org/W19-0121
https://doi.org/10.1162/ling_a_00299
https://proceedings.mlr.press/v153/lambert21a.html
https://proceedings.mlr.press/v153/lambert21a.html
https://aclanthology.org/2021.scil-1.4
https://aclanthology.org/2021.scil-1.4
https://aclanthology.org/2021.scil-1.4
https://aclanthology.org/2020.scil-1.49
https://aclanthology.org/2020.scil-1.49
https://doi.org/10.7275/nz4q-6b09
https://doi.org/10.7275/nz4q-6b09
https://doi.org/10.7275/nz4q-6b09

	Introduction
	Subregular syntax with ancestor strings
	Strictly local languages
	Tier-based strictly local languages
	Dependency trees and ancestor strings
	The strengths and limitations of a-strings

	Distributional learning of syntactic blockers
	Preliminaries
	Tracking bigrams
	Generalizing with the Tolerance Principle
	Beyond islands
	Limitations of SL learning

	Constructing the tier
	The problem of learning tiers
	From local to tier-based constraints
	Algorithm
	Discussion

	On the Height-Locality Connection
	Conclusion

