

Overview

Some properties of Hindi-Urdu (HU) verbal agreement

• **case-sensitivity** – only unmarked (nominative) DPs can agree

- long-distance agreement (LDA) with object of embedded verb
- **default agreement** when there is no viable goal
- parasitic agreement non-finite verbs agree iff finite verb does
- **Puzzle** Why should the non-finite verb care if the finite verb also ag

This work I provide a formal analysis of HU verbal agreement usin system in Hanson (2024a,b).

 \rightarrow Parasitic agreement is the natural outcome of the interaction of tier-based strictly 2-local (TSL-2) processes, each unexception its own, operating together in the same language.

Data and Generalizations

Key Generalizations

- Agreement targets the highest visible (nominative) argument
- Infinitives can be *v*P or TP, *v*P is transparent, TP is opaque (Keine
- Participles/infinitives agree with DP iff the finite verb does

Data (from Bhatt 2005)

Agreeing verb forms are **blue**. Default verb forms are **green**. Agreeing DPs are <u>underlined</u>.

- (1) a. Subject agreement (unmarked subject/object) <u>Rahul</u> kitaab parh-**taa** thaa Rahul.M book.F read-HAB.MSG be.PST.MSG 'Rahul used to read (a/the) book.'
 - b. Object agreement (ERG subject + unmarked object) Rahul-ne <u>kitaab</u> parh-**ii** thii Rahul-ERG book.F read-PFV.F be.PST.FSG 'Rahul had read the book.'
 - c. Default agreement (ERG subject + ACC object) Rahul-ne kitaab-ko parh-**aa** thaa Rahul-ERG book.F-ACC read-PFV.MSG be.PST.MSG 'Rahul had read the book.'
- (2) a. LDA across vPRam-ne [_{vP} <u>roții</u> khaa-**nii**] chaah-**ii** bread.F eat-INF.F want-PFV.FSG Ram-erg 'Ram wanted to eat bread.'
 - b. No LDA across TP (default agreement) Ram-ne [_{TP} <u>rotii</u> khaa-**naa**] chaah-**aa** bread.F eat-INF.M want-PFV.MSG Ram-erg 'Ram wanted to eat bread.'
 - c. LDA blocked by subject (default in infinitive) <u>Shahrukh</u> [tehnii kaat-**naa**] chaah-**taa** thaa Shahrukh branch.F cut-INF.M want-PFV.MSG be.PST.MSG 'Shahrukh wants to cut the branch.'

Summary

Bhatt (2005): T mediates agreement between DP goal and all verbs. Formally, **two separable processes** are involved:

- 1. Finite T agrees with the *closest* visible DP, if possible
- 2. All verbs along the *path* from T to DP agree iff T does

TWO STEPS TO PARASITIC AGREEMENT IN HINDI-URDU Kenneth Hanson mail@kennethhanson.net **Stony Brook University**

grees? • Agreement follows the complement spine (don't look inside specifiers/adjuncts) • Only maximal projections are relevant (skip other projections) • Diacritics indicate items which move/agree/receive case <i>in the present derivation</i> • Each tier includes all potential participants and blockers (e.g. T_{INF}) • The constraints regulate the distribution of the diacritics • $T_{FIN}[\phi]$ • $T_{FIN}[\phi]$ • $U[\phi]$ • $U[\phi$	
b ii) over a tier of salient elements (others invisible iii) with a constraint window of size 2 Tiers over paths grees? • Agreement follows the complement spine (don't look inside specifiers/adjuncts) • Only maximal projections are relevant (skip other projections) • Diacritics indicate items which move/agree/receive case in the present derivation • Each tier includes all potential participants and blockers (e.g. T_{INF}) • The constraints regulate the distribution of the diacritics • The constraints regulate the distribution of the diacritics • $T_{FIN}[\phi]$ $D_{[ERG]}$ $V_{I[\phi]}$ $V_{[\phi]}$ $V_{I[\phi]}$ $V_{I[\phi]}$ $V_{I[\phi]}$ $V_$	
iii) with a constraint window of size 2 S Tiers over paths $Press? Press? Prove the distribution of the diacritics Prove the distribution of the diacritics Press Press Prove the distribution of the diacritics Press Press Press Prove the distribution of the diacritics Press Pr$	e)
grees? • Agreement follows the complement spine (don't look inside specifiers/adjuncts) • Only maximal projections are relevant (skip other projections) • Diacritics indicate items which move/agree/receive case <i>in the present derivation</i> • Each tier includes all potential participants and blockers (e.g. T_{INF}) • The constraints regulate the distribution of the diacritics • Trin(ϕ) • The constraints regulate the distribution of the diacritics • $T_{FIN}[\phi]$ • $U_{[\phi]}$ • $U_{[$	
g the Only maximal projections are relevant (skip other projections) • Diacritics indicate items which move/agree/receive case in the present derivation • Each tier includes all potential participants and blockers (e.g. T_{INF}) • The constraints regulate the distribution of the diacritics $T_{FIN}[\phi]$ $D_{[ERG]}$ $v_{[\phi]}$ $D_{[ERG]}$ $v_{[\phi]}$ $v_{[\phi]}$ $v_{[\phi]}$ $v_{[\phi]}$ $v_{[\phi]}$ $v_{[\phi$	
• Diacritics indicate items which move/agree/receive case <i>in the present derivation</i> • Each tier includes all potential participants and blockers (e.g. T_{INF}) • The constraints regulate the distribution of the diacritics $T_{FIN}[\phi]$ $D_{[ERG]}$ $D_{[ERG]}$ $v_{[\phi]}$ $v_{[$	
• Each tier includes all potential participants and blockers (e.g. T_{INF}) • The constraints regulate the distribution of the diacritics $T_{FIN}[\phi]$ $T_{FIN}[\phi]$ $D_{[ERG]}$ $V_{[\phi]}$	
1 on • The constraints regulate the distribution of the diacritics $ \begin{array}{c} T_{\text{FIN}[\phi]} \\ T_{\text{FIN}[\phi]} \\ D_{[\text{ERG}]} \\ v_{[\phi]} \\ v_{[\phi$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$T_{\text{FIN}[\phi]} \underbrace{v_{[\phi]}}_{D_{[\text{ERG}]}} \underbrace{v_{[\phi]}}_{v_{[\phi]}} \underbrace{v_{[\phi]}}_{\text{Want}} \underbrace{\text{Step 1: } \mathbf{T}_{\text{FIN}[\phi]}}_{\text{V}[\phi]} \underbrace{D_{[\text{ERG}]}}_{V_{[\phi]}} V \underbrace{v_{[\phi]}}_{V_{[\phi]}} V$ $(019) \qquad \qquad$	
2019) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
2019) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
2019) Step 2: $\mathbf{T}_{\text{FIN}[\phi]} \boldsymbol{v}_{[\phi]} D_{[\text{ERG}]} V \boldsymbol{v}_{[\phi]} V$ Step 2: $\mathbf{T}_{\text{FIN}[\phi]} \boldsymbol{v}_{[\phi]} D_{[\text{ERG}]} V \boldsymbol{v}_{[\phi]} V$	
2019) $D_{[ERG]} Ram v_{[\phi]} want want v_{[\phi]} V_{[\phi]} V_{[\phi]} V_{[\phi]} V_{[\phi]} V_{[\phi]} V_{[\phi]} V_{[\phi]} V_{[\phi]} V$	
$\int \operatorname{Step} Z: \mathbf{I}_{\operatorname{FIN}}[\phi] \mathbf{U}[\phi] \mathbf{U}[\phi] \mathbf{V}[\phi] $	$D_{[NOM,\phi]}$
$\int \operatorname{Step} Z: \mathbf{I}_{\operatorname{FIN}}[\phi] \mathcal{U}[\phi] \mathcal{U}[\phi] \mathcal{V}[\phi] $	
$v_{[\phi]}$ eat	
	D _{[NOM} ,φ]
eat $D_{[NOM,\phi]}$	D _{[NOM} ,φ]
$D_{[NOM,\phi]}$ bread	D _{[NOM,φ}

Deriving the data

	Tier Contents	Tier Constraints
Step 1	$\mathbf{T}_{\mathbf{FIN}}, \mathbf{D}_{\mathbf{NOM}}, \mathbf{T}_{\mathbf{INF}}$	T_{FIN} and D_{NOM} must ag
Step 2	T_{FIN} , D_{NOM} , T_{INF} , v , Aux	 Elements in chain f Elements in incom

Table 1: Contents and informal constraints for each tier

- In (1a, 1b, 2a), T_{FIN} agrees with D, so v/Aux are forced to agree as well (see above figure)
- In (1c), there is no visible DP, so non-agreement is allowed Step 1: T_{FIN} \checkmark No D to agree with Step 2: $\mathbf{T}_{FIN} \cdot \mathbf{Aux} \cdot \boldsymbol{v} \cdot \boldsymbol{v}$ \checkmark All non-agreeing
- In (2b), T_{INF} intervenes, creating two incomplete chains Step 1: $\mathbf{T}_{FIN} \cdot \mathbf{T}_{INF} \cdot \mathbf{D}_{[NOM]}$ \checkmark Non-adjacent T and D don't agree Step 2: $\mathbf{T}_{\mathbf{FIN}} \cdot \boldsymbol{v} \cdot \mathbf{T}_{\mathbf{INF}} \cdot \boldsymbol{v} \cdot \mathbf{D}_{[\mathbf{NOM}]}$ \checkmark Each chain is consistently non-agreeing
- In (2c), the subject blocks LDA, making the lower chain incomplete Step 1: $\mathbf{T}_{\mathbf{FIN}[\phi]} \cdot \mathbf{D}_{[\mathbf{NOM},\phi]} \cdot \mathbf{D}_{[\mathbf{NOM}]}$
 - Step 2: $\mathbf{T}_{\mathbf{FIN}[\phi]} \cdot \mathbf{Aux}_{[\phi]} \cdot \boldsymbol{v}_{[\phi]} \cdot \mathbf{D}_{[\mathbf{NOM},\phi]} \cdot \boldsymbol{v} \cdot \mathbf{D}_{[\mathbf{NOM}]}$ \checkmark Lower chain non-agreeing

Why one tier isn't enough

With just the one tier (= Step 2), we can *ban* agreement where it should not occur, but we cannot *require* it where it should occur, because every link in a complete chain of non-agreeing pairs is licit.

 $T_{\text{FIN}} (\text{Aux}) \quad v \quad D_{[\text{ERG}]} \quad V \quad v \quad V \quad D_{[\text{NOM}]}$

Figure 2: Visualization of Step 2 for LDA configuration without agreement

 \rightarrow Long-distance dependencies cannot be reduced to local links

https://www.kennethhanson.net

agree if adjacent, otherwise they must not from T_{FIN} to D_{NOM} must all agree/not agree plete chain must not agree

✓ Lower D does not agree

More on TSL-2

Example: long-distance harmony with blocking

Slovenian sibilant

- Tier contents:
- Tier constraint
- Harmony is e intervenes

The Form of the Constraints

Constraints for Step 1

• No mismatched agreement in any chain: * $T_{\text{FIN}[\phi]} \cdot \text{Aux}$, * $T_{\text{FIN}[\phi]} \cdot v$, * $\text{Aux}_{[\phi]} \cdot v$, * $v_{[\phi]} \cdot v$, * $v_{[\phi]} \cdot D_{[\text{NOM}]}$, * $T_{\text{FIN}} \cdot \text{Aux}_{[\phi]}$, * $T_{\text{FIN}} \cdot v_{[\phi]}$, * $\text{Aux} \cdot v_{[\phi]}$, * $v \cdot v_{[\phi]}$, * $v \cdot D_{[\text{NOM},\phi]}$

• Probe requires a goal: $\{T_{\text{FIN}[\phi]} \cdot D_{[\text{NOM}]}, T_{\text{FIN}[\phi]} \cdot T_{\text{INF}}, T_{\text{FIN}[\phi]} \cdot \ltimes \}$ • Goal requires a probe: $\{T_{\text{FIN}} \cdot D_{[\text{NOM},\phi]}, T_{\text{INF}} \cdot D_{[\text{INF},\phi]}, T_{\text{INF},\phi]}, T_{\text{INF},\phi]}, T_{\text{INF},\phi} \cdot D_{[\text{INF},\phi]}, T_{\text{I$ • Must agree if possible: $\{^*T_{FIN} \cdot D_{[NOM]}\}$ Constraints for Step 2

The Computational Typology of Agreement

We expect to see close variants of these patterns in agreement, as well as similar patterns in other domains. This appears to be bourne out.

Related languages Some dialects of HU (and related languages) lack parasitic agreement. For these, a single tier is sufficient.

Affix hopping Two tiers are needed even in English: i) T agrees with D, skipping verbs; ii) tense/agreement transmitted to closest verb, blocked by Neg. Unlike in HU, affix hopping does not iterate.

Extraction morphology If considered distinct from agreement (Graf 2022a), this is nonetheless formally similar to parasitic agreement. **Phonology** Some unbounded circumabient processes (Jardine 2016)

Acknowledgments University.

References

Annual Meetings on Phonology. Vol. 2.

Link to PDF

t harmony (simplified)		Word	Tier
: {s, ∫, t}	\checkmark	<mark>s</mark> aka s a	SS
nts: {*s∫, *∫s}	\checkmark	∫aka∫a	\iint
enforced except when [t]	X	<mark>s</mark> aka∫a	S∫
	\checkmark	sata a	stſ

Notice: a single intervener breaks any long-distance dependency

• Originally proposed for phonology (Heinz et al. 2011) • Good fit for long-distance phonotactics (McMullin and Hansson 2016) as well as syntax (Graf 2022b; Hanson 2024b)

• In general, each long-distance process has its own tier and constraints

• Agreeing chain must start with T_{FIN} and end with D_{NOM} :

 $\{*T_{INF} \cdot v_{[\phi]}, *v \cdot v_{[\phi]}, *v_{[\phi]} \cdot T_{INF}, *v_{[\phi]} \cdot \ltimes\}$

might be similar to parasitic agreement.

This work was partly supported by the Institute for Advanced Computational Science at Stony Brook

Rajesh Bhatt (2005). Long Distance Agreement in Hindi-Urdu. Natural Language & Linguistic Theory 23. **Thomas Graf** (2022a). Diving deeper into subregular syntax. *Theoretical Linguistics* 48.3–4. • **Thomas Graf** (2022b). Typological implications of tier-based strictly local movement. *Proceedings of the Society for* Computation in Linguistics 2022. • Kenneth Hanson (2024a). A Tier-Based Model of Syntactic Agreement. Proceedings of CLS 60. • Kenneth Hanson (2024b). Tier-Based Strict Locality and the Typology of Agreement. Journal of Language Modeling. To appear. • Jeffrey Heinz et al. (2011). Tier-based strictly local constraints for phonology. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human language technologies. • Adam Jardine (2016). Computationally, tone is different. Phonology 33.2. • Stefan Keine (2019). Selective Opacity. *Linguistic Inquiry* 50.1. • Kevin McMullin and Gunnar Ólafur Hansson (2016). Long-Distance Phonotactics as Tier-Based Strictly 2-Local Languages. Proceedings of the